A Novel Weight-Shared Multi-Stage Network Architecture of CNNs for Scale Invariance

نویسندگان

  • Ryo Takahashi
  • Takashi Matsubara
  • Kuniaki Uehara
چکیده

Convolutional neural networks (CNNs) have demonstrated remarkable results in image classification tasks for benchmark and practical uses. The CNNs with deeper architectures have achieved higher performances recently thanks to their robustness to parallel shift of objects in images aw well as their numerous parameters and resulting high expression ability. However, the CNNs have a limited robustness to other geometric transformations such as scaling and rotation. This problem is considered to limit performance improvement of the deep CNNs but there is no established solution. This study focuses on scale transformation and proposes a novel network architecture called weight-shared multi-stage network (WSMS-Net), consisting of multiple stages of CNNs. The WSMS-Net is easily combined with existing deep CNNs, such as ResNet and DenseNet, and enables them to acquire a robustness to scaling of objects. The experimental results demonstrate that existing deep CNNs combined with the proposed WSMS-Net achieve higher accuracy for image classification tasks only with a little increase in the number of parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale-Invariant Recognition by Weight-Shared CNNs in Parallel

Deep convolutional neural networks (CNNs) have become one of the most successful methods for image processing tasks in past few years. Recent studies on modern residual architectures, enabling CNNs to be much deeper, have achieved much better results thanks to their high expressive ability by numerous parameters. In general, CNNs are known to have the robustness to the small parallel shift of o...

متن کامل

Design of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems

Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Tiled convolutional neural networks

Convolutional neural networks (CNNs) have been successfully applied to many tasks such as digit and object recognition. Using convolutional (tied) weights significantly reduces the number of parameters that have to be learned, and also allows translational invariance to be hard-coded into the architecture. In this paper, we consider the problem of learning invariances, rather than relying on ha...

متن کامل

Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision

Humans can recognize objects in a way that is invariant to scale, translation, and clutter. We use invariance theory as a conceptual basis, to computationally model this phenomenon. This theory discusses the role of eccentricity in human visual processing, and is a generalization of feedforward convolutional neural networks (CNNs). Our model explains some key psychophysical observations relatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.03505  شماره 

صفحات  -

تاریخ انتشار 2017